首页> 外文会议>Advances in computer science and information engineering >Handwriting Digit Recognition Based on Fractal Edge Feature and BP Neural Net
【24h】

Handwriting Digit Recognition Based on Fractal Edge Feature and BP Neural Net

机译:基于分形边缘特征和BP神经网络的手写数字识别

获取原文
获取原文并翻译 | 示例

摘要

Handwritten digit recognition (HDR) is one of the difficult research areas on pattern recognition, Hence, evaluation a performance of algorithms on HDR problem is of great importance. In this paper, a method of the recognition of the handwriting digits based on fractal edge feature and BP neural net is proposed. First, extracting the edge feature of the character by using the fractal edge detect method; then, combining the fractal edge feature with three other features (ring zones, projection histograms, moments); finally, taking BP neutral net as the classifier and getting the result. The experimental results show that the proposed method has good anti-noise and high accuracy performance.
机译:手写数字识别(HDR)是模式识别研究的难点之一,因此,评价算法对HDR问题的性能具有重要意义。提出了一种基于分形边缘特征和BP神经网络的手写体数字识别方法。首先,利用分形边缘检测方法提取字符的边缘特征。然后,将分形边缘特征与其他三个特征(环带,投影直方图,矩)结合起来;最后,以BP神经网络作为分类器并得到结果。实验结果表明,该方法具有良好的抗噪性能和较高的精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号