首页> 外文会议>Advances in computer science and information engineering >Breakout Prediction System Based on Combined Neural Network in Continuous Casting
【24h】

Breakout Prediction System Based on Combined Neural Network in Continuous Casting

机译:基于组合神经网络的连铸漏斗预测系统

获取原文
获取原文并翻译 | 示例

摘要

A breakout prediction system based on combined neural network in continuous casting is developed. It adopts the radial basis function (RBF) neural network for single-thermocouple temperature pattern pre-diagnosis, and logic judgment unit for multi-thermocouple temperature pattern recognition at first, then uses fuzzy neural network based on Takagi-Sugeno (T-S) model to make final decision. In the RBF network, the maximum entropy function is used to normalize input data. According to the law of crack growth in the bonding location, the horizontal network prediction model is adopted to logically judge multi-thermocouple temperature pattern, the prediction time is shortened. In the T-S fuzzy neural network model, the overall influencing factors of breakout are considered. The results show that the breakout prediction system based on combined neural network can effectively decrease the false alarm rate and improve the prediction accuracy.
机译:开发了基于组合神经网络的连铸漏斗预测系统。它首先采用径向基函数神经网络(RBF)进行单热电偶温度模式的预诊断,首先采用逻辑判断单元进行多热电偶温度模式的识别,然后使用基于Takagi-Sugeno(TS)模型的模糊神经网络进行预测。做出最终决定。在RBF网络中,最大熵函数用于归一化输入数据。根据结合部位裂纹扩展的规律,采用水平网络预测模型对多个热电偶的温度模式进行逻辑判断,缩短了预测时间。在T-S模糊神经网络模型中,考虑了突破的总体影响因素。结果表明,基于组合神经网络的突围预测系统可以有效降低虚警率,提高预测精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号