首页> 外文会议>Advanced sensor systems and applications V >Planar optical microring resonators used as biosensors: Guidelines for designing polymer- compared to semiconductor-based waveguides
【24h】

Planar optical microring resonators used as biosensors: Guidelines for designing polymer- compared to semiconductor-based waveguides

机译:用作生物传感器的平面光学微环谐振器:与基于半导体的波导相比,设计聚合物的准则

获取原文
获取原文并翻译 | 示例

摘要

Due to their small footprint and high sensitivity to biological molecule binding, planar optical microring resonators gained high interest for use as optical biosensors. Typically, microring resonators are made of semiconductor based materials, and are manufactured by time-consuming lithography and etching steps. Semiconductor based waveguides have high refractive indices, and thus, a high refractive index contrast between core and cladding. In this case, due to strong mode confinement, bending loss is a comparably minor issue and becomes relevant only at small bending radii of less than 5μm. The main loss is determined by surface scattering, and thus, semiconductor based curved waveguides need to be designed and manufactured to have very smooth sidewalls. If polymer materials are used, microring resonators can be cost-efficiently manufactured by nanoimprint lithography. The resulting larger polymer waveguide dimensions facilitate in- and out-coupling, and polymer surfaces allow using established surface biofunctionalization techniques. For polymer waveguides, due to the small refractive index contrast, surface scattering loss is a minor issue, but bending loss becomes dominant for radii of less than 80μm due to the low mode confinement to the core. In this work, design guidelines for polymer microring resonator waveguides are given and compared to semiconductor based waveguides. Waveguide losses due to bending and surface roughness are determined analytically or numerically by finite element methods. Coupling coefficients are calculated by finite element methods and coupled-mode theory. Resulting conclusions for designing polymer waveguides and semiconductor waveguides are derived.
机译:由于其占地面积小和对生物分子结合的高敏感性,平面光学微环谐振器作为光学生物传感器引起了人们的极大兴趣。通常,微环谐振器由基于半导体的材料制成,并通过费时的光刻和蚀刻步骤制造。基于半导体的波导具有高折射率,因此纤芯和包层之间的折射率对比度高。在这种情况下,由于强烈的模式限制,弯曲损耗是一个相对较小的问题,仅在小于5μm的较小弯曲半径时才有意义。主要损耗由表面散射确定,因此,基于半导体的弯曲波导需要设计和制造为具有非常光滑的侧壁。如果使用聚合物材料,则可以通过纳米压印光刻技术经济高效地制造微环谐振器。所得到的较大的聚合物波导尺寸有助于进行内耦合和外耦合,并且聚合物表面允许使用已建立的表面生物功能化技术。对于聚合物波导,由于折射率对比度小,因此表面散射损耗是个小问题,但是由于对纤芯的低模限制,弯曲损耗在半径小于80μm的半径中占主导地位。在这项工作中,给出了聚合物微环谐振器波导的设计指南,并将其与基于半导体的波导进行了比较。由弯曲和表面粗糙度引起的波导损耗可通过有限元方法解析或数值确定。耦合系数通过有限元方法和耦合模式理论计算。得出了设计聚合物波导和半导体波导的结论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号