首页> 外文会议>Advanced computing strategies for engineering >SLAM-Driven Intelligent Autonomous Mobile Robot Navigation for Construction Applications
【24h】

SLAM-Driven Intelligent Autonomous Mobile Robot Navigation for Construction Applications

机译:SLAM驱动的智能自主移动机器人导航,用于建筑应用

获取原文
获取原文并翻译 | 示例

摘要

The demand for construction site automation with mobile robots is increasing due to its advantages in potential cost-saving, productivity, and safety. To be realistically deployed in construction sites, mobile robots must be capable of navigating in unstructured and cluttered environments. Furthermore, mobile robots should recognize both static and dynamic obstacles to determine drivable paths. However, existing robot navigation methods are not suitable for construction applications due to the challenging environmental conditions in construction sites. This study introduces an autonomous as-is 3D spatial data collection and perception method for mobile robots specifically aimed for construction job sites with many spatial uncertainties. The proposed Simultaneous Localization and Mapping (SLAM)-based navigation and object recognition methods were implemented and tested with a custom-designed mobile robot platform, Ground Robot for Mapping Infrastructure (GRoMI), which uses multiple laser scanners and a camera to sense and build a 3D environment map. Since SLAM did not detect uneven surface conditions and spatiotemporal objects on the ground, an obstacle detection algorithm was developed to recognize and avoid obstacles and the highly uneven terrain in real time. Given the 3D real-time scan map generated by 3D laser scanners, a path-finding algorithm was developed for autonomous navigation in an unknown environment with obstacles. Overall, the 3D color-mapped point clouds of construction sites generated by GRoMI were of sufficient quality to be used for many construction management applications such as construction progress monitoring, safety hazard identification, and defect detection.
机译:由于其在潜在的成本节省,生产率和安全性方面的优势,对使用移动机器人进行施工现场自动化的需求正在增长。为了切实地部署在建筑工地中,移动机器人必须能够在非结构化和混乱的环境中导航。此外,移动机器人应同时识别静态障碍物和动态障碍物,以确定可行驶路线。但是,由于建筑工地环境条件艰巨,因此现有的机器人导航方法不适合建筑应用。这项研究介绍了一种针对移动机器人的自主3D空间数据收集和感知方法,专门针对具有许多空间不确定性的施工现场。拟议的基于同时定位和地图(SLAM)的导航和对象识别方法已通过定制设计的移动机器人平台,即用于制图基础设施的地面机器人(GRoMI)进行了实施和测试,该平台使用多个激光扫描仪和一个摄像头进行感测和构建3D环境图。由于SLAM不能检测地面上的不平坦表面条件和时空物体,因此开发了一种障碍物检测算法来实时识别和避开障碍物和高度不平坦的地形。给定由3D激光扫描仪生成的3D实时扫描图,开发了一种寻路算法,用于在未知的有障碍物的环境中进行自主导航。总体而言,由GRoMI生成的3D颜色映射的施工现场点云具有足够的质量,可用于许多施工管理应用程序,例如施工进度监控,安全隐患识别和缺陷检测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号