首页> 外文会议>Advanced computational and communication paradigms >Measurement of Walking Speed from EMG Signal using Kurtosis of Approximate Coefficients
【24h】

Measurement of Walking Speed from EMG Signal using Kurtosis of Approximate Coefficients

机译:使用近似系数峰度从EMG信号测量步行速度

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the speed of human walking has been assessed from EMG signals using Kurtosis of approximate coefficients-based wavelet transform. The signals have been captured from three muscles of lower extremity of normal individuals during level walking at different speeds. The collected signals have been denoised as the signals were heavily noised. The denoised EMG data have been decomposed at various DWT levels for feature extraction and subsequently Kurtosis values have been determined. The patterns of change of Kurtosis values with respect to walking speeds corresponding to individual DWT levels have been studied and compared. Results demonstrated many definite relations between walking speeds and Kurtosis values. Most regular patterns have been utilized for scaling. Finally, an algorithm has developed for assessment of unknown walking speed data and subsequently validated. EMG sensor-based different scheme for monitoring health parameters of disable persons like muscle strength, response, etc., are becoming familiar in biomedical image processing. The method proposed in this work is adding another effective means of monitoring walking speed using same type of sensors which incorporates both time-frequency domain analysis. Therefore, the method seems a little bit complex; however, it can be used in a compact and robust way with other existing schemes for monitoring health parameters. The work can be extended to inter-link the walking speed features with those parameters and can be utilized in closed loop prosthetic control having EMG sensory feedback.
机译:在本文中,已经使用基于近似系数的小波变换的峰度从EMG信号中评估了人类的步行速度。这些信号是在正常人以不同速度行走时从下肢的三块肌肉捕获的。所收集的信号由于噪声严重而被去噪。去噪的EMG数据已在各种DWT级别分解,以进行特征提取,随后确定了峰度值。研究并比较了峰度值相对于与各个DWT水平对应的步行速度的变化模式。结果表明步行速度和峰度值之间存在许多确定的关系。大多数规则模式已用于缩放。最终,开发了一种算法,用于评估未知的步行速度数据,并随后进行了验证。在生物医学图像处理中,基于EMG传感器的用于监测残疾人健康参数(如肌肉力量,反应能力等)的不同方案变得越来越熟悉。在这项工作中提出的方法是增加了另一种使用相同类型的传感器来监测步行速度的有效方法,该方法结合了时频域分析。因此,该方法似乎有点复杂。但是,它可以与其他现有的监视健康参数的方案一起以紧凑而强大的方式使用。可以扩展工作以将步行速度特征与那些参数相互链接,并且可以用于具有EMG感觉反馈的闭环假体控制中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号