首页> 外文会议>Adaptive optics and wavefront control for biological systems >Holographic fluorescence microscopy with incoherent digital holographic adaptive optics
【24h】

Holographic fluorescence microscopy with incoherent digital holographic adaptive optics

机译:具有非相干数字全息自适应光学器件的全息荧光显微镜

获取原文
获取原文并翻译 | 示例

摘要

Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: wavefront sensor, wavefront corrector and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, e.g., lenslet arrays for sensing or multi-acuator deformable mirrors for correcting. We have previously introduced an alternate approach to adaptive optics based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile is possible not only with the conventional coherent type of digital holography, but also with a new type of digital holography using incoherent light: self-interference incoherent digital holography (SIDH). The SIDH generates complex - i.e. amplitude plus phase - hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using a guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. The adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.
机译:在这些领域,将自适应光学技术引入天文学和眼科学已经做出了巨大贡献,使人们能够恢复由于大气湍流或眼睛像差而模糊的图像。使用各种技术的研究人员也对显微镜成像中类似的自适应光学器件的改进感兴趣。当前的自适应光学技术通常包含三个关键要素:波前传感器,波前校正器和控制器。这些硬件元件往往笨重,昂贵且分辨率受限,例如涉及用于感测的小透镜阵列或用于校正的多可变形镜。之前,我们已经基于数字全息的独特功能为自适应光学器件引入了另一种方法,即直接访问光场的相位分布图和数字操作相位分布图的能力。我们还证明,不仅可以使用传统的相干类型的数字全息术,而且可以使用使用非相干光的新型数字全息术:自干涉非相干数字全息术(SIDH)直接访问和补偿相位轮廓。 SIDH从通过非相干光(例如LED,灯,日光或荧光)获取的一个或多个干涉图中生成复数(即振幅加相位)全息图。复数点扩散函数可以使用星光照射进行测量,并且可以对全场图像进行确定性反卷积。我们目前使用SIDH在全息荧光显微镜中进行像差补偿的实验演示。 SIDH的自适应光学器件为通过完整的组织层或其他类型的异常介质改善细胞荧光显微镜提供了新的工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号