首页> 外文会议>Adaptive and Natural Computing Algorithms pt.2; Lecture Notes in Computer Science; 4432 >Recognition of Shipping Container Identifiers Using ART2-Based Quantization and a Refined RBF Network
【24h】

Recognition of Shipping Container Identifiers Using ART2-Based Quantization and a Refined RBF Network

机译:使用基于ART2的量化和改进的RBF网络识别货运集装箱标识符

获取原文
获取原文并翻译 | 示例

摘要

Generally, it is difficult to find constant patterns on identifiers in a container image, since the identifiers are not normalized in color, size, and position, etc. and their shapes are damaged by external environmental factors. This paper distinguishes identifier areas from background noises and removes noises by using an ART2-based quantization method and general morphological information on the identifiers such as color, size, ratio of height to width, and a distance from other identifiers. Individual identifier is extracted by applying the 8-directional contour tracking method to each identifier area. This paper proposes a refined ART2-based RBF network and applies it to the recognition of identifiers. Through experiments with 300 container images, the proposed algorithm showed more improved accuracy of recognizing container identifiers than the others proposed previously, in spite of using shorter training time.
机译:通常,难以在容器图像中的标识符上找到恒定的图案,这是因为标识符的颜色,大小和位置等均未标准化,并且其形状受到外部环境因素的破坏。本文使用基于ART2的量化方法以及有关标识符的一般形态信息(例如颜色,大小,高宽比以及与其他标识符的距离)来区分标识符区域和背景噪声,并消除噪声。通过将8向轮廓跟踪方法应用于每个标识符区域来提取单个标识符。本文提出了一种改进的基于ART2的RBF网络,并将其应用于标识符的识别。通过对300个容器图像的实验,尽管使用了较短的训练时间,但与以前提出的算法相比,该算法显示出了更高的识别容器标识符的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号