首页> 外文会议>Adaptive and Natural Computing Algorithms pt.1; Lecture Notes in Computer Science; 4431 >Improving the Quality of the Pareto Frontier Approximation Obtained by Semi-elitist Evolutionary Multi-agent System Using Distributed and Decentralized Frontier Crowding Mechanism
【24h】

Improving the Quality of the Pareto Frontier Approximation Obtained by Semi-elitist Evolutionary Multi-agent System Using Distributed and Decentralized Frontier Crowding Mechanism

机译:利用分布式和分散式边界拥挤机制提高半精英进化多主体系统获得的帕累托边界逼近的质量

获取原文
获取原文并翻译 | 示例

摘要

The paper presents one of additional mechanisms called distributed frontier crowding which can be introduced to the Semi-Elitist Evolutionary Multi Agent System—selEMAS and which can significantly improve the quality of obtained Pareto frontier approximation. The preliminary experimental comparative studies are based on a typical multi-objective problem presenting the most important features of the proposed approach.
机译:本文提出了一种称为分布式前沿拥挤的其他机制,可以将其引入半精英进化多智能体系统(selEMAS),并且可以显着提高获得的帕累托前沿近似的质量。初步的实验比较研究是基于一个典型的多目标问题,提出了该方法的最重要特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号