首页> 外文会议>Adaptive multimedia retrieval : understanding media and adapting to the user >Note Recognition from Monophonic Audio: A Clustering Approach
【24h】

Note Recognition from Monophonic Audio: A Clustering Approach

机译:从单声道音频中进行音符识别:一种聚类方法

获取原文
获取原文并翻译 | 示例

摘要

We describe a new method for recognizing notes from mono-phonic audio, such as sung or whistled queries. Our method achieves results similar to known methods, but without any probabilistic models that would need to be trained. Instead, we define a distance function for audio frames that captures three criteria of closeness which usually coincide with frames belonging to the same note: small pitch difference, small loudness fluctuations between the frames, and the absence of non-pitched frames between the compared frames. We use this distance function for clustering frames such that the total intra-cluster costs are minimized. Criteria for clustering termination include the uniformity of note costs. This new method is fast, does not rely on any particular fundamental frequency estimation method being used, and it is largely independent of the input mode (singing, whistling, playing an instrument). It is already being used successfully for the "query by humming/whistling/playing" search feature on the publicly available collaborative melody directory Musipedia.org.
机译:我们描述了一种从单声音频中识别音符的新方法,例如唱歌或吹口哨的查询。我们的方法获得的结果与已知方法相似,但是没有任何需要训练的概率模型。取而代之的是,我们为音频帧定义一个距离函数,该函数捕获通常与属于同一音符的帧相吻合的三个紧密度标准:音高差异小,帧之间的响度波动小以及比较帧之间不存在非音高帧。我们将此距离函数用于群集框架,以使群集内的总成本最小化。终止群集的条件包括票据成本的一致性。这种新方法速度快,不依赖于所使用的任何特定基本频率估计方法,并且在很大程度上与输入模式(唱歌,吹哨,弹奏乐器)无关。它已被成功用于公共协作旋律目录Musipedia.org上的“嗡嗡声/发声/播放查询”搜索功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号