首页> 外文会议>Adaptive multimedia retrieval : Context, exploration, and fusion. >A Comparison of Human, Automatic and Collaborative Music Genre Classification and User Centric Evaluation of Genre Classification Systems
【24h】

A Comparison of Human, Automatic and Collaborative Music Genre Classification and User Centric Evaluation of Genre Classification Systems

机译:人,自动和协作音乐流派分类的比较以及流派分类系统的以用户为中心的评估

获取原文
获取原文并翻译 | 示例

摘要

In this paper two sets of evaluation experiments are conducted. First, we compare state-of-the-art automatic music genre classification algorithms to human performance on the same dataset, via a listening experiment. This will show that the improvements of content-based systems over the last years have reduced the gap between automatic and human classification performance, but could not yet close this gap. As an important extension to previous work in this context, we will also compare the automatic and human classification performance to a collaborative approach. Second, we propose two evaluation metrics, called user scores, that are based on the votes of the participants of the listening experiment. This user centric evaluation approach allows to get rid of predefined ground truth annotations and allows to account for the ambiguous human perception of musical genre. To take genre ambiguities into account is an important advantage with respect to the evaluation of content-based systems, especially since the dataset compiled in this work (both the audio files and collected votes) are publicly available.
机译:本文进行了两组评估实验。首先,我们通过聆听实验将最先进的自动音乐流派分类算法与同一数据集上的人类演奏进行比较。这将表明,过去几年基于内容的系统的改进已缩小了自动分类性能与人工分类性能之间的差距,但仍无法弥补这一差距。作为此背景下以前工作的重要扩展,我们还将比较自动分类和人工分类的性能与协作方法。其次,我们提出了两个评估指标,称为用户评分,这些指标基于听力实验参与者的投票。这种以用户为中心的评估方法可以摆脱预定义的地面事实注释,并可以解决人类对音乐流派的模棱两可的情况。在评估基于内容的系统方面,考虑到流派歧义是一个重要的优势,尤其是因为这项工作中编译的数据集(音频文件和收集的选票)都是公开可用的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号