首页> 外文期刊>IEEE signal processing letters >Automatic Classification of Musical Genres Using Inter-Genre Similarity
【24h】

Automatic Classification of Musical Genres Using Inter-Genre Similarity

机译:使用跨流派相似度对音乐流派进行自动分类

获取原文
获取原文并翻译 | 示例

摘要

Musical genre classification is an essential tool for music information retrieval systems and it has potential to become a highly demanded application in various media platforms. Two important problems of the automatic musical genre classification are feature extraction and classifier design. In this letter, we propose two novel classifiers using inter-genre similarity (IGS) modeling and investigate the use of dynamic timbral texture features in order to improve automatic musical genre classification performance. Inter-genre similarity is modeled over hard-to-classify samples of the musical genre feature space. In the classification, samples within inter-genre similarity class are eliminated to reduce inter-genre confusion and to improve genre classification performance. Experimental results show that the proposed classifiers provide better classification rates than the existing methods.
机译:音乐体裁分类是音乐信息检索系统必不可少的工具,它有可能成为各种媒体平台中要求很高的应用程序。音乐类型自动分类的两个重要问题是特征提取和分类器设计。在这封信中,我们提出了两个使用流派相似度(IGS)建模的新颖分类器,并研究了动态音色纹理特征的使用,以提高自动音乐流派分类性能。在音乐流派特征空间的难以分类的样本上对流派相似度建模。在分类中,消除了类别间相似性类别内的样本,以减少类别间的混淆并改善类别分类的性能。实验结果表明,与现有方法相比,本文提出的分类器具有更好的分类率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号