【24h】

A Fast Algorithm For Finding Frequent Episodes In Event Streams

机译:在事件流中查找频繁情节的快速算法

获取原文
获取原文并翻译 | 示例

摘要

Frequent episode discovery is a popular framework for mining data available as a long sequence of events. An episode is essentially a short ordered sequence of event types and the frequency of an episode is some suitable measure of how often the episode occurs in the data sequence. Recently, we proposed a new frequency measure for episodes based on the notion of non-overlapped occurrences of episodes in the event sequence, and showed that, such a definition, in addition to yielding computationally efficient algorithms, has some important theoretical properties in connecting frequent episode discovery with HMM learning. This paper presents some new algorithms for frequent episode discovery under this non-overlapped occurrences-based frequency definition. The algorithms presented here are better (by a factor of N, where N denotes the size of episodes being discovered) in terms of both time and space complexities when compared to existing methods for frequent episode discovery. We show through some simulation experiments, that our algorithms are very efficient. The new algorithms presented here have arguably the least possible orders of space and time complexities for the task of frequent episode discovery.
机译:频繁的情节发现是一种流行的框架,用于挖掘可作为长期事件使用的数据。情节本质上是事件类型的短序序列,并且情节的频率是该情节在数据序列中发生频率的某种适当度量。最近,我们基于事件序列中事件的不重叠发生的概念提出了一种新的事件频率测量方法,并表明,这种定义除了产生计算有效的算法外,在连接频繁事件方面具有重要的理论特性。通过HMM学习发现情节。本文提出了一些新的算法,用于在这种基于非重叠事件的频率定义下频繁发现事件。与现有的频繁情节发现方法相比,此处提出的算法在时间和空间复杂度方面更好(因数N,其中N表示被发现情节的大小)。我们通过一些仿真实验表明,我们的算法非常有效。对于频繁的情节发现任务,这里介绍的新算法可以说具有最小的空间和时间复杂度顺序。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号