首页> 外文会议>ACM IEEE international conference on Embedded software >Communication-aware stochastic allocation and scheduling framework for conditional task graphs in multi-processor systems-on-chip
【24h】

Communication-aware stochastic allocation and scheduling framework for conditional task graphs in multi-processor systems-on-chip

机译:多处理器片上系统中条件任务图的通信感知随机分配和调度框架

获取原文

摘要

The increasing levels of system integration in Multi-Processor System-on-Chips (MPSoCs) emphasize the need for new design flows for efficient mapping of multi-task applications onto hardware platforms. Even though data-flow graphs are often used for pure data-streaming, many realistic applications can only be specified as conditional task graphs (CTG). The problem of allocating and scheduling conditional task graphs on processors in a distributed real-time system is NP-hard. The first contribution of this paper is a complete stochastic allocation and scheduling framework, where an MPSoC virtual platform is used to accurately derive input parameters, validate abstract models of system components and assess constraint satisfaction and objective function optimization. The optimizer implements an efficient and exact approach to allocation and scheduling based on problem decomposition. The original contributions of the approach appear both in the allocation and in the scheduling part of the optimizer. For the first, we propose an exact analytic formulation of the stochastic objective function based on the task graph analysis, while for the scheduling part we extend the timetable constraint for conditional activities. The second contribution of this paper is the introduction of a software library and API for the deployment of conditional task graph applications onto Multi-Processor System-on-Chips. With our library support, programmers can quickly develop multi-task applications which will run on a multi-core architecture and can easily apply the optimal solution found by our optimizer. The proposed programming support manages OS-level issues, such as task allocation and scheduling, as well as task-level issues, like inter-task communication and synchronization.
机译:多处理器片上系统(MPSoC)中系统集成水平的提高,强调了对新设计流程的需求,以将多任务应用程序有效地映射到硬件平台上。即使数据流图通常用于纯数据流,许多实际应用程序也只能指定为条件任务图(CTG)。在分布式实时系统中的处理器上分配和调度条件任务图的问题是NP难题。本文的第一个贡献是一个完整的随机分配和调度框架,其中使用MPSoC虚拟平台来准确地得出输入参数,验证系统组件的抽象模型以及评估约束满足度和目标函数优化。优化器基于问题分解实现了一种高效且精确的分配和调度方法。该方法的原始贡献同时出现在优化器的分配和调度部分。首先,我们基于任务图分析提出了随机目标函数的精确解析公式,而对于调度部分,我们扩展了有条件活动的时间表约束。本文的第二个贡献是引入了一个软件库和API,用于将条件任务图应用程序部署到“多处理器片上系统”上。借助我们的库支持,程序员可以快速开发将在多核体系结构上运行的多任务应用程序,并且可以轻松地应用优化器找到的最佳解决方案。拟议的编程支持可管理OS级问题,例如任务分配和计划,以及任务级问题,例如任务间的通信和同步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号