【24h】

A Neural Network Retraining Approach for Process Output Prediction

机译:一种用于过程输出预测的神经网络再训练方法

获取原文
获取原文并翻译 | 示例

摘要

This paper is a report that describes a feedforward neural network architecture and an application of retraining algorithm in order to forecast relevant process variables representative for glass manufacturing, provided by EUNITE Competition 2003. The main purpose is to establish an optimum feedforward neural architecture and a well suited delay vector for data forecasting. The artificial neural networks (ANNs) ability to extract significant information provides valuable framework for the representation of relationships present in the structure of the data. The evaluation of the output error after the retraining of an ANN shows us that this procedure can substantially improve the achieved results.
机译:本文是由EUNITE Competition 2003提供的一份报告,描述了前馈神经网络体系结构和再训练算法的应用,以预测代表玻璃制造的相关工艺变量。主要目的是建立最佳的前馈神经体系结构和井适用于数据预测的延迟向量。人工神经网络(ANN)提取重要信息的能力为表示数据结构中存在的关系提供了有价值的框架。人工神经网络的再训练后输出误差的评估表明,该程序可以大大改善所获得的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号