首页> 外文会议>8th workshop on mining and learning with graphs 2010 >Frequent Subgraph Mining on a Single Large Graph Using Sampling Techniques
【24h】

Frequent Subgraph Mining on a Single Large Graph Using Sampling Techniques

机译:使用采样技术在单个大图上频繁进行子图挖掘

获取原文
获取原文并翻译 | 示例

摘要

Frequent subgraph mining has always been an important issue in data mining. Several frequent graph mining methods have been developed for mining graph transactions. However, these methods become less usable when the dataset is a single large graph. Also, when the graph is too large to fit in main memory, alternative techniques are necessary to efficiently find frequent subgraphs. We investigate the task of frequent subgraph mining on a single large graph using sampling approaches and find that sampling is a feasible approach for this task. We evaluate different sampling methods and provide a novel sampling method called 'random areas selection sampling', which produces better results than all the current graph sampling approaches with customized parameters.
机译:频繁的子图挖掘一直是数据挖掘中的重要问题。已经开发了几种频繁的图挖掘方法来挖掘图事务。但是,当数据集是单个大图时,这些方法将变得不可用。同样,当图形太大而无法放入主存储器中时,必须使用替代技术才能有效地找到频繁的子图形。我们调查使用采样方法在单个大图上频繁进行子图挖掘的任务,发现采样是实现此任务的可行方法。我们评估了不同的采样方法,并提供了一种称为“随机区域选择采样”的新颖采样方法,该方法产生的效果要优于当前所有具有自定义参数的图形采样方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号