首页> 外文会议>8th workshop on Asian language resources. >Cross-Market Model Adaptation with Pairwise Preference Data for Web Search Ranking
【24h】

Cross-Market Model Adaptation with Pairwise Preference Data for Web Search Ranking

机译:带有成对偏好数据的跨市场模型适应用于Web搜索排名

获取原文
获取原文并翻译 | 示例

摘要

Machine-learned ranking techniques au-tomatically learn a complex document ranking function given training data. These techniques have demonstrated the effectiveness and flexibility required of a commercial web search. However, man-ually labeled training data (with multiple absolute grades) has become the bottle-neck for training a quality ranking func-tion, particularly for a new domain. In this paper, we explore the adaptation of machine-learned ranking models across a set of geographically diverse markets with the market-specific pairwise prefer-ence data, which can be easily obtained from clickthrough logs. We propose a novel adaptation algorithm, Pairwise-Trada, which is able to adapt ranking models that are trained with multi-grade labeled training data to the target mar-ket using the target-market-specific pair-wise preference data. We present results demonstrating the efficacy of our tech-nique on a set of commercial search en-gine data.
机译:机器学习的排名技术自动根据训练数据学习复杂的文档排名功能。这些技术已经证明了商业网络搜索所需的有效性和灵活性。但是,人工标记的训练数据(具有多个绝对等级)已成为训练质量排名功能(尤其是对于新领域)的瓶颈。在本文中,我们使用特定于市场的成对偏好数据,探索了机器学习的排名模型在一组地理上不同的市场中的适应性,该数据可以从点击日志中轻松获得。我们提出了一种新颖的自适应算法Pairwise-Trada,它能够使用特定于目标市场的成对偏好数据,将使用多级标记训练数据训练的排名模型适配到目标市场。我们提供的结果证明了我们的技术对一组商业搜索引擎数据的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号