首页> 外文会议>7th World Multiconference on Systemics, Cybernetics and Informatics(SCI 2003) vol.18: Post-Conference Issue >A New Approximation with Radial Basis Function Type Neural Networks for Fault Diagnosis in Induction Motor Drive System
【24h】

A New Approximation with Radial Basis Function Type Neural Networks for Fault Diagnosis in Induction Motor Drive System

机译:基于径向基函数神经网络的感应电动机驱动系统故障诊断的新方法。

获取原文
获取原文并翻译 | 示例

摘要

It is developed a radial basis function neural network based fault diagnosis system to perform mechanical faults of induction motor drive system. The usage of changeable load conditions affects the performance and faults of AC drives-especially induction motor control systems directly. In this paper, a new approximation under a radial basis function neural network for screwing mechanical fault with different type neural networks -classic and fast back-propagation algorithms for the application of AC drive motor control systems to increase the performance as a basic and important study is synchronously considered at the same time.
机译:开发了基于径向基函数神经网络的故障诊断系统,以执行感应电动机驱动系统的机械故障。负载条件变化的使用会直接影响交流变频器的性能和故障,尤其是感应电动机控制系统。本文在径向基函数神经网络下用不同类型的神经网络解决机械故障的一种新的近似方法-经典和快速反向传播算法在交流驱动电机控制系统中的应用,以提高性能,这是基础和重要的研究同时考虑。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号