【24h】

Evidence-based Regression Trees for Object and Event Classification

机译:用于对象和事件分类的基于证据的回归树

获取原文
获取原文并翻译 | 示例

摘要

Existing approaches to object and event classification have focused on data fusion requiring a priori probability distributions. The hierarchical nature of object (buildings, bridges, etc) development in two dimensional imagery readily lends itself to a more rigorous mathematical modeling with prediction capabilities. This paper presents a new approach to the classification of hierarchical (time and space) object classification based upon an innovative Evidence-based Regression Tree (ERT) prediction mechanism. Typical regression trees, based on classical Bayesian probability theory, require the specification of a complete probabilistic model, and assume certain knowledge of all prior probabilities. Our ERT approach is based on logistical constraints founded on evidence and uncertainty principles; it exploits probability intervals measuring both the level of belief and the amount of information extracted from imager sources. We believe our system will facilitate the production of anticipatory intelligence from diverse information sources into the new products needed for the changing threat environment.
机译:现有的对象和事件分类方法已经集中在需要先验概率分布的数据融合上。二维图像中对象(建筑物,桥梁等)开发的层次性很容易使其具有预测功能,因此可以进行更严格的数学建模。本文提出了一种基于创新的基于证据的回归树(ERT)预测机制的分层(时间和空间)对象分类的新方法。基于经典贝叶斯概率理论的典型回归树需要指定完整的概率模型,并假定所有先验概率的知识。我们的ERT方法基于基于证据和不确定性原则的后勤约束;它利用概率间隔来测量信念水平和从成像器来源提取的信息量。我们相信,我们的系统将有助于从各种信息源中生成预期情报,并将其应用于不断变化的威胁环境所需的新产品中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号