首页> 外文会议>6th International Conference on Soft Computing and Pattern Recognition >GMM-based handwriting style identification system for historical documents
【24h】

GMM-based handwriting style identification system for historical documents

机译:基于GMM的历史文献笔迹识别系统

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we describe a novel method for handwriting style identification. A handwriting style can be common to one or several writer. It can represent also a handwriting style used in a period of the history or for specific document. Our method is based on Gaussian Mixture Models (GMMs) using different kind of features computed using a combined fixed-length horizontal and vertical sliding window moving over a document page. For each writing style a GMM is built and trained using page images. At the recognition phase, the system returns log-likelihood scores. The GMM model with the highest score is selected. Experiments using page images from historical German document collection demonstrate good performance results. The identification rate of the GMM-based system developed with six historical handwriting style is 100%.
机译:在本文中,我们描述了一种手写风格识别的新方法。手写风格可能是一位或多位作家所共有的。它也可以代表一段历史或特定文档中使用的笔迹样式。我们的方法基于高斯混合模型(GMM),该模型使用在文档页面上移动的固定长度水平和垂直滑动窗口组合计算出的不同类型的特征。对于每种写作风格,都会使用页面图像来构建和训练GMM。在识别阶段,系统返回对数似然分数。选择得分最高的GMM模型。使用来自德国历史文献集的页面图像进行的实验证明了良好的性能结果。具有六种历史手写风格的基于GMM的系统的识别率为100%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号