首页> 外文会议>2019 56th ACM/IEEE Design Automation Conference >On-Chip Memory Technology Design Space Explorations for Mobile Deep Neural Network Accelerators
【24h】

On-Chip Memory Technology Design Space Explorations for Mobile Deep Neural Network Accelerators

机译:移动深度神经网络加速器的片上存储技术设计空间探索

获取原文
获取原文并翻译 | 示例

摘要

Deep neural network (DNN) inference tasks have become ubiquitous workloads on mobile SoCs and demand energy-efficient hardware accelerators. Mobile DNN accelerators are heavily area-constrained, with only minimal on-chip SRAM, which results in heavy use of inefficient off-chip DRAM. With diminishing returns from conventional silicon technology scaling, emerging memory technologies that offer better area density than SRAM can boost accelerator efficiency by minimizing costly off-chip DRAM accesses. This paper presents a detailed design space exploration (DSE) of technology-system co-design for systolic-array accelerators. We focus on practical/mature on-chip memory technologies, including SRAM, eDRAM, MRAM, and 3D vertical RRAM (VRRAM). The DSE employs state-of-the-art optimizations (e.g., model compression and optimized buffer scheduling), and evaluates results on important models including ResNet-50, MobileNet, and Faster-RCNN. Compared to an SRAM/DRAM baseline, MRAM-based accelerators show up to 4.68× energy benefits (57% area overhead), while a 3D VRRAM-based design achieves 2.22 × energy benefits (33% area reduction).
机译:深度神经网络(DNN)推理任务已成为移动SoC上无处不在的工作负载,并需要节能的硬件加速器。移动DNN加速器受面积限制很大,仅具有最小的片上SRAM,这导致大量使用低效的片外DRAM。随着传统硅技术规模收益的减少,新兴的存储器技术提供了比SRAM更好的区域密度,可以通过最大程度地减少昂贵的片外DRAM访问来提高加速器效率。本文介绍了用于脉动阵列加速器的技术-系统协同设计的详细设计空间探索(DSE)。我们专注于实用/成熟的片上存储器技术,包括SRAM,eDRAM,MRAM和3D垂直RRAM(VRRAM)。 DSE采用了最先进的优化技术(例如模型压缩和优化的缓冲区调度),并评估了包括ResNet-50,MobileNet和Faster-RCNN在内的重要模型的结果。与SRAM / DRAM基准相比,基于MRAM的加速器显示出高达4.68倍的能源效益(57%的面积开销),而基于3D VRRAM的设计实现了2.22倍的能源效益(减少33%的面积)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号