首页> 外文会议>4th workshop on syntax and structure in statistical translation. >All in Strings: a Powerful String-based Automatic MT Evaluation Metric with Multiple Granularities
【24h】

All in Strings: a Powerful String-based Automatic MT Evaluation Metric with Multiple Granularities

机译:全部包含在字符串中:具有多个粒度的强大的基于字符串的自动MT评估指标

获取原文
获取原文并翻译 | 示例

摘要

String-based metrics of automatic ma-chine translation (MT) evaluation are widely applied in MT research. Mean-while, some linguistic motivated me-trics have been suggested to improve the string-based metrics in sentence-level evaluation. In this work, we at-tempt to change their original calcula-tion units (granularities) of string-based metrics to generate new features. We then propose a powerful string-based automatic MT evaluation metric, com-bining all the features with various granularities based on SVM rank and regression models. The experimental results show that i) the new features with various granularities can contri-bute to the automatic evaluation of translation quality; ii) our proposed string-based metrics with multiple gra-nularities based on SVM regression model can achieve higher correlations with human assessments than the state-of- art automatic metrics.
机译:基于字符串的自动机器翻译(MT)评估指标已广泛应用于MT研究中。同时,已经提出了一些基于语言的度量标准,以改进句子级评估中基于字符串的度量标准。在这项工作中,我们尝试更改其基于字符串的指标的原始计算单位(粒度)以生成新功能。然后,我们提出了一个功能强大的基于字符串的自动MT评估指标,将基于SVM等级和回归模型的所有功能与各种粒度进行了组合。实验结果表明:i)具有不同粒度的新功能有助于翻译质量的自动评估; ii)我们建议的基于SVM回归模型的具有多个粒度的基于字符串的度量标准,与最新的自动度量标准相比,可以与人工评估实现更高的相关性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号