首页> 外文会议>2018 4th International Conference on Computing Communication and Automation >Removal of Fog Effect from Highly Foggy Images Using Depth Estimation and Fuzzy Contrast Enhancement Method
【24h】

Removal of Fog Effect from Highly Foggy Images Using Depth Estimation and Fuzzy Contrast Enhancement Method

机译:深度估计和模糊对比度增强方法去除高雾图像中的雾影响

获取原文
获取原文并翻译 | 示例

摘要

Due to effect of fog visibility of objects decreases and it will be very difficult to recognize any object in hazy atmosphere. So there is always a need of a method which can detect the effect of haze and can reduce the effect of haze to enhance the quality of image. This paper presents depth estimation and Fuzzy Contrast Enhancement based model to remove effect of haze from image by making a linear model to estimate scene depth of the hazy image. underneath this model the depth data is well recovered. Fuzzy logic system is developed for enhancement of contrast. The aim is to get rid of haze from a hazy image and it may be achieving by generate a picture of high contrast than the first image by applying more weights on input gray levels so that it can match with mean gray value. Experimental results ensure that our technique is extremely good. While comparing our result with existing methods on the basis of MSE, PSNR and time and result shows average PSNR of our method is 16.56 which is much better than the existing methods.
机译:由于雾的影响,物体的可见性降低,并且在朦胧的气氛中很难识别任何物体。因此,始终需要一种能够检测出雾度的影响并且可以降低雾度的影响以提高图像质量的方法。本文提出了一种基于深度估计和基于模糊对比度增强的模型,通过建立一个线性模型来估计雾霾图像的景深,从而消除了雾霾对图像的影响。在此模型下,深度数据可以很好地恢复。开发了模糊逻辑系统以增强对比度。目的是消除朦胧图像中的雾度,并且可以通过在输入灰度级上施加更多权重以使其与平均灰度值匹配来生成比第一幅图像高对比度的图像来实现。实验结果确保我们的技术非常出色。在基于MSE,PSNR和时间的基础上,将我们的结果与现有方法进行比较,结果表明我们方法的平均PSNR为16.56,这比现有方法要好得多。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号