首页> 外文会议>3rd ACM SIGSPATIAL international workshop on computational transportation science 2010 >Using Real-Time Weather Information for Traveler Information: A Statistical Learning Application UnderA lternative Experimental Conditions
【24h】

Using Real-Time Weather Information for Traveler Information: A Statistical Learning Application UnderA lternative Experimental Conditions

机译:使用实时天气信息获取旅行者信息:替代实验条件下的统计学习应用程序

获取原文
获取原文并翻译 | 示例

摘要

This paper examines the case where information on real-time weather conditions is used to predict future' speeds in a traveler's route so that they can make travel decisions relating to whether or not to make the trip, change departure time or to take an alternative route, if already on the road. We examine the performance of two different classes of models (a "base" model and a "statistical learning" model) to predict future speeds while controlling for location, demand/time-of-day, prevailing speeds, and future weather conditions. A stratified sampling strategy is adopted with good and bad weather conditions sampled separately within locations along the Eisenhower Expressway in Chicago. We find differences in the predictive abilities of the two models under different weather conditions. The SVM model outperforms the linear regression model by predicting 41% more cases within 3mph of the observed speed under heavy rain conditions, 16.7% more cases within 3mph under snow conditions, 14.5% more cases within 3mph under thunderstorm conditions, and with less dramatic differences under other weather conditions. The results show promise that SVM regression maybe useful in bringing together streaming forecasted weather data and traffic conditions to inform travelers.
机译:本文研究了以下情况:使用实时天气情况信息来预测旅行者路线中的未来速度,以便他们可以做出与是否进行旅行,更改出发时间或选择替代路线有关的旅行决策,如果已经在路上。我们检查了两种不同类型的模型(“基础”模型和“统计学习”模型)的性能,以预测未来的速度,同时控制位置,需求/时段,当前速度和未来的天气状况。采用分层采样策略,在芝加哥艾森豪威尔高速公路沿线的各个地点分别对好天气和坏天气进行采样。我们发现两种模型在不同天气条件下的预测能力存在差异。 SVM模型的性能优于线性回归模型,在大雨条件下,预测速度以每小时3mph的速度增加41%,在雪条件下以3mph的速度增加16.7%,在雷雨条件下3mph的速度增加14.5%,戏剧性差异较小在其他天气条件下。结果表明,支持向量机回归可能有助于将流经天气预报的天气数据和交通状况汇总在一起,以告知旅行者。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号