首页> 外文会议>37th annual international symposium on computer architecture 2010 >Rethinking DRAM Design and Organization for Energy-Constrained Multi-Cores
【24h】

Rethinking DRAM Design and Organization for Energy-Constrained Multi-Cores

机译:重新思考能量受限多核的DRAM设计和组织

获取原文
获取原文并翻译 | 示例

摘要

DRAM vendors have traditionally optimized the cost-per-bit metric, often making design decisions that incur energy penalties. A prime example is the overfetch feature in DRAM, where a single request activates thousands of bit-lines in many DRAM chips, only to return a single cache line to the CPU. The focus on cost-per-bit is questionable in modern-day servers where operating costs can easily exceed the purchase cost. Modern technology trends are also placing very different demands on the memory system: (i) queuing delays are a significant component of memory access time, (ii) there is a high energy premium for the level of reliability expected for business-critical computing, and (iii) the memory access stream emerging from multi-core systems exhibits limited locality. All of these trends necessitate an overhaul of DRAM architecture, even if it means a slight compromise in the cost-per-bit metric. This paper examines three primary innovations. The first is a modification to DRAM chip microarchitecture that retains the traditional DDRx SDRAM interface. Selective Bit-line Activation (SBA) waits for both RAS (row address) and CAS (column address) signals to arrive before activating exactly those bitlines that provide the requested cache line. SBA reduces energy consumption while incurring slight area and performance penalties. The second innovation, Single Subarray Access (SSA), fundamentally re-organizes the layout of DRAM arrays and the mapping of data to these arrays so that an entire cache line is fetched from a single subarray. It requires a different interface to the memory controller, reduces dynamic and background energy (by about 6X and 5X), incurs a slight area penalty (4%), and can even lead to performance improvements (54% on average) by reducing queuing delays. The third innovation further penalizes the cost-per-bit metric by adding a checksum feature to each cache line. This checksum error-detection feature can then be used to build stronger RAID-like fault tolerance, including chipkill-level reliability. Such a technique is especially crucial for the SSA architecture where the entire cache line is localized to a single chip. This DRAM chip microarchi-tectural change leads to a dramatic reduction in the energy and storage overheads for reliability. The proposed architectures will also apply to other emerging memory technologies (such as resistive memories) and will be less disruptive to standards, interfaces, and the design flow if they can be incorporated into first-generation designs.
机译:DRAM供应商传统上优化了每位成本的度量标准,通常会做出设计决策,从而导致能源消耗。一个典型的例子是DRAM中的超取功能,其中单个请求激活了许多DRAM芯片中的数千条位线,而只是将一条缓存线返回给CPU。在现代服务器中,对每位成本的关注是令人质疑的,因为现代服务器的运营成本很容易超过购买成本。现代技术趋势也对存储系统提出了截然不同的要求:(i)排队延迟是存储器访问时间的重要组成部分;(ii)关键业务计算所期望的可靠性水平具有很高的能耗,以及(iii)来自多核系统的内存访问流显示出局限性。所有这些趋势都需要对DRAM体系结构进行全面改革,即使这意味着对每位成本度量标准略有妥协。本文研究了三个主要创新。首先是对DRAM芯片微体系结构的修改,保留了传统的DDRx SDRAM接口。选择性位线激活(SBA)等待RAS(行地址)和CAS(列地址)信号都到达,然后才完全激活那些提供所请求的缓存行的位线。 SBA降低了能耗,同时又引起了面积和性能上的损失。第二项创新是单一子阵列访问(SSA),从根本上重新组织了DRAM阵列的布局以及数据到这些阵列的映射,以便从单个子阵列获取整个缓存行。它需要与存储器控制器使用不同的接口,减少动态和背景能量(分别减少约6倍和5倍),招致轻微的面积损失(4%),甚至可以通过减少排队延迟来提高性能(平均54%)。 。第三种创新是通过向每个高速缓存行添加校验和功能来进一步惩罚每位成本度量。然后,此校验和错误检测功能可用于建立更强的RAID式容错能力,包括芯片级的可靠性。对于整个高速缓存线都位于单个芯片上的SSA体系结构,这种技术尤其重要。这种DRAM芯片的微体系结构变化大大降低了能源和存储开销,从而提高了可靠性。拟议的体系结构还将应用于其他新兴的存储器技术(例如电阻性存储器),并且如果可以将它们集成到第一代设计中,则对标准,接口和设计流程的破坏也较小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号