首页> 外文会议>2nd workshop on child, computer and interaction 2009 >Avoiding Speaker Variability in Pronunciation Verification of Children' Disordered Speech
【24h】

Avoiding Speaker Variability in Pronunciation Verification of Children' Disordered Speech

机译:在儿童语言障碍的语音验证中避免说话人变异

获取原文
获取原文并翻译 | 示例

摘要

This paper deals with the problematic of speaker variability in a task of pronunciation verification for the speech therapy of children and young adults in Computer-Aided Pronunciation Training (CAPT) tools. The baseline system evaluates two different score normalization techniques: Traditional Test normalization (T-norm), and a novel N-best based normalization that outperforms the first by normalizing to the log-likelihood score of the first alternative phoneme in an unconstrained N-best list. When performing speaker adaptation, the use of all the adaptation data from the speaker improves the performance measured in Equal Error Rate (EER) of these systems compared to the speaker independent systems; but this can be outperformed by more precise models that only adapt to the correctly pronounced phonetic units as labeled by a set of human experts. The best EER obtained in all experiments is 15.63% when using both elements: Score normalization and speaker adaptation. The possibility of automatizing a more precise adaptation without the human intervention is finally proposed and discussed.
机译:本文针对计算机辅助语音训练(CAPT)工具中儿童和年轻人语音治疗的语音验证任务中的说话人变异性问题。基准系统评估两种不同的分数归一化技术:传统测试归一化(T-范数),以及一种新颖的基于N-best的归一化方法,它通过在无约束的N-best中归一化至第一个替代音素的对数似然分数来胜过第一个清单。与独立于扬声器的系统相比,执行扬声器自适应时,使用来自扬声器的所有自适应数据可提高这些系统的均等错误率(EER)衡量的性能;但这可以通过更精确的模型来胜过,该模型只能适应一组人类专家标记的正确发音的语音单位。当同时使用两个要素时,在所有实验中获得的最佳EER为15.63%:得分归一化和说话人适应性。最后提出并讨论了自动进行更精确的适应而无需人工干预的可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号