首页> 外文会议>2nd international workshop on social signal processing 2010 >Improving Speech Processing trough Social Signals: Automatic Speaker Segmentation of Political Debates using Role based Turn-Taking Patterns
【24h】

Improving Speech Processing trough Social Signals: Automatic Speaker Segmentation of Political Debates using Role based Turn-Taking Patterns

机译:通过社交信号改善语音处理:使用基于角色的回合模式对政治辩论进行自动演讲者细分

获取原文
获取原文并翻译 | 示例

摘要

Several recent works on social signals have addressed the problem of statistical modeling of social interaction in multiparty discussions showing that characteristics like turn-taking patterns can be modeled and predicted according to the role that each participant has in the discussion. Reversely this work investigates the use of social signals to improve conventional speech processing methods. In details we propose the use of turn-taking patterns induced by roles for improving speaker diarization, the task of determining 'Who spoke when' in an audio file. In detail, this work studies how to include this information as statistical prior on the speaker interactions for segmenting and clustering speakers in multiparty political debates. Experiments reveal that the proposed approach reduces the speaker error over the baseline by 25% when both the number of speakers and their roles are known and by 13% relative when the pattern information is estimated from the data. Furthermore we never verify a performance degradation in any recording. Experiments are also carried out to investigate the contribution of the first-order Markov assumption i. e. that the role of the speaker n is conditionally dependent on the role of the speaker n — 1.
机译:关于社交信号的一些最新著作已经解决了多方讨论中社交互动的统计建模问题,这些问题表明可以根据每个参与者在讨论中的角色来建模和预测诸如转弯模式之类的特征。相反,这项工作调查了社交信号的使用,以改善传统的语音处理方法。详细地,我们建议使用由角色引起的转弯模式,以改善说话者的二语化,这是确定音频文件中“何时说话的人”的任务。详细地讲,这项工作研究如何在演讲者互动之前将这些信息作为统计信息包括在内,以便在多党政治辩论中对演讲者进行细分和聚集。实验表明,当已知说话人的数量及其角色时,所提出的方法可将说话人的误差降低25%以上,而从数据中估计模式信息时,相对误差则可降低13%。此外,我们绝不会在任何记录中证明性能下降。还进行了实验以研究一阶马尔可夫假设i的贡献。 e。发言人n的角色有条件地取决于发言人n_1的角色。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号