首页> 外文会议>22nd conference on computational natural language learning >Uncovering divergent linguistic information in word embeddings with lessons for intrinsic and extrinsic evaluation
【24h】

Uncovering divergent linguistic information in word embeddings with lessons for intrinsic and extrinsic evaluation

机译:在单词嵌入中发现不同的语言信息,并提供用于内在和外在评估的课程

获取原文
获取原文并翻译 | 示例

摘要

Following the recent success of word embeddings, it has been argued that there is no such thing as an ideal representation for words, as different models tend to capture divergent and often mutually incompatible aspects like semantics/syntax and similarity/relatedness. In this paper, we show that each embedding model captures more information than directly apparent. A linear transformation that adjusts the similarity order of the model without any external resource can tailor it to achieve better results in those aspects, providing a new perspective on how embeddings encode divergent linguistic information. In addition, we explore the relation between intrinsic and extrinsic evaluation, as the effect of our transformations in downstream tasks is higher for unsu-pervised systems than for supervised ones.
机译:继词嵌入的最新成功之后,有人认为没有一种理想的词表示方法,因为不同的模型倾向于捕获发散的,常常互不兼容的方面,例如语义/语法和相似性/相关性。在本文中,我们证明了每个嵌入模型所捕获的信息多于直接显现的信息。无需任何外部资源即可调整模型相似度的线性变换可以对其进行定制,以在这些方面获得更好的结果,从而为嵌入如何编码不同的语言信息提供了新的视角。另外,我们探索了内在评价与外在评价之间的关系,因为我们对非监督系统的转换对下游任务的影响要大于监督系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号