首页> 外文会议>22nd conference on computational natural language learning >Hierarchical Attention Based Position-aware Network for Aspect-level Sentiment Analysis
【24h】

Hierarchical Attention Based Position-aware Network for Aspect-level Sentiment Analysis

机译:基于分层注意的位置感知网络,用于方面级别的情感分析

获取原文
获取原文并翻译 | 示例

摘要

Aspect-level sentiment analysis aims to identify the sentiment of a specific target in its context. Previous works have proved that the interactions between aspects and the contexts are important. On this basis, we also propose a succinct hierarchical attention based mechanism to fuse the information of targets and the contextual words. In addition, most existing methods ignore the position information of the aspect when encoding the sentence. In this paper, we argue that the position-aware representations are beneficial to this task. Therefore, we propose a hierarchical attention based position-aware network (HAPN), which introduces position embeddings to learn the position-aware representations of sentences and further generate the target-specific representations of contextual words. The experimental results on SemEval 2014 dataset show that our approach outperforms the state-of-the-art methods.
机译:方面级别的情感分析旨在识别特定目标在其上下文中的情感。先前的工作证明,方面和上下文之间的交互非常重要。在此基础上,我们还提出了一种简洁的基于层次注意的机制,以融合目标和上下文词的信息。此外,大多数现有方法在对句子进行编码时都会忽略方面的位置信息。在本文中,我们认为位置感知表示对于此任务是有益的。因此,我们提出了一种基于层次注意的位置感知网络(HAPN),该网络引入位置嵌入以学习句子的位置感知表示,并进一步生成上下文单词的目标特定表示。 SemEval 2014数据集上的实验结果表明,我们的方法优于最新方法。

著录项

  • 来源
  • 会议地点 Brussels(BE)
  • 作者单位

    School of Computer Science and Technology, Dalian University of Technology;

    School of Computer Science and Technology, Dalian University of Technology;

    School of Computer Science and Technology, Dalian University of Technology;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号