首页> 外文会议>2018 IEEE/ACM 1st International Workshop on Software Engineering for AI in Autonomous Systems >Automotive Safety and Machine Learning: Initial Results from a Study on How to Adapt the ISO 26262 Safety Standard
【24h】

Automotive Safety and Machine Learning: Initial Results from a Study on How to Adapt the ISO 26262 Safety Standard

机译:汽车安全和机器学习:如何适应ISO 26262安全标准的研究的初步结果

获取原文
获取原文并翻译 | 示例

摘要

Machine learning (ML) applications generate a continuous stream of success stories from various domains. ML enables many novel applications, also in safety-critical contexts. However, the functional safety standards such as ISO 26262 did not evolve to cover ML. We conduct an exploratory study on which parts of ISO 26262 represent the most critical gaps between safety engineering and ML development. While this paper only reports the first steps toward a larger research endeavor, we report three adaptations that are critically needed to allow ISO 26262 compliant engineering, and related suggestions on how to evolve the standard.
机译:机器学习(ML)应用程序从各个领域生成连续不断的成功案例。 ML在安全性至关重要的环境中也实现了许多新颖的应用程序。但是,诸如ISO 26262之类的功能安全标准并未演变为涵盖ML。我们进行了一项探索性研究,其中ISO 26262的哪些部分代表了安全工程与ML开发之间最关键的差距。尽管本文仅报告迈向更大研究努力的第一步,但我们报告了三项改编,这些改编是允许符合ISO 26262要求的工程所急需的,以及有关如何发展该标准的相关建议。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号