【24h】

Asynchronous Group-Based ADMM Algorithm under Efficient Communication Structure

机译:高效通信结构下基于异步组的ADMM算法

获取原文
获取原文并翻译 | 示例

摘要

Alternating direction method of multipliers (ADMM) has been recognized as an efficient approach for solving many large-scale machine learning problems. However, the ADMM under master-slave mode suffers from several limitations, e.g., can't make full use of multi-core cluster environment and single master load is too heavy, resulting in huge time overhead. In this paper, we propose a hierarchical communication structure. Since intra-node communications mostly use shared memory, we divide the processes of the same node into one group, the processes within the group synchronize communication, and each group communicate asynchronously with the master. Combining this structure with the ADMM algorithm, a hierarchical asynchronous group-based ADMM algorithm (HAG-ADMM) is proposed. Theoretical analysis and experiments show that the hierarchical communication structure can improve the communication efficiency of the algorithm and has no effect on the convergence.
机译:乘法器交替方向方法(ADMM)已被公认为解决许多大规模机器学习问题的有效方法。但是,主从模式下的ADMM受到一些限制,例如无法充分利用多核集群环境,并且单个主负载太重,从而导致巨大的时间开销。在本文中,我们提出了一种分层的通信结构。由于节点内通信主要使用共享内存,因此我们将同一节点的进程分为一组,该组内的进程同步通信,并且每个组与主服务器异步通信。将该结构与ADMM算法相结合,提出了一种基于分层异步组的ADMM算法(HAG-ADMM)。理论分析和实验表明,分层通信结构可以提高算法的通信效率,对收敛性没有影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号