首页> 外文期刊>Journal of supercomputing >HSAC-ALADMM: an asynchronous lazy ADMM algorithm based on hierarchical sparse allreduce communication
【24h】

HSAC-ALADMM: an asynchronous lazy ADMM algorithm based on hierarchical sparse allreduce communication

机译:HSAC-ALADMM:一种基于分层稀疏重新雷德通信的异步惰性admm算法

获取原文
获取原文并翻译 | 示例

摘要

The distributed alternating direction method of multipliers (ADMM) is an effective algorithm for solving large-scale optimization problems. However, its high communication cost limits its scalability. An asynchronous lazy ADMM algorithm based on hierarchical sparse allreduce communication mode (HSAC-ALADMM) is proposed to reduce the communication cost of the distributed ADMM: firstly, this paper proposes a lazily aggregate parameters strategy to filter the transmission parameters of the distributed ADMM, which reduces the payload of the node per iteration. Secondly, a hierarchical sparse allreduce communication mode is tailored for sparse data to aggregate the filtered transmission parameters effectively. Finally, a Calculator-Communicator-Manager framework is designed to implement the proposed algorithm, which combines the asynchronous communication protocol and the allreduce communication mode effectively. It separates the calculation and communication by multithreading, thus improving the efficiency of system calculation and communication. Experimental results for the L1-regularized logistic regression problem with public datasets show that the HSAC-ALADMM algorithm is faster than existing asynchronous ADMM algorithms. Compared with existing sparse allreduce algorithms, the hierarchical sparse allreduce algorithm proposed in this paper makes better use of the characteristics of sparse data to reduce system time in multi-core cluster.
机译:乘法器(ADMM)的分布式交替方向方法是解决大规模优化问题的有效算法。然而,其高通信成本限制了其可扩展性。提出了一种基于分层稀疏重新发布的通信模式(HSAC-ALADMM)的异步惰性符号算法,以降低分布式ADMM的通信成本:首先,本文提出了一种潜入的汇总参数策略来过滤分布式ADMM的传输参数,这减少每个迭代节点的有效载荷。其次,为稀疏数据量身定制分层稀疏重定程通信模式,以有效地聚合过滤的传输参数。最后,计算器 - Communicator-Manager框架旨在实现所提出的算法,其有效地结合了异步通信协议和所述已解密通信模式。它通过多线程分开计算和通信,从而提高了系统计算和通信的效率。与公共数据集的L1定期逻辑回归问题的实验结果表明,HSAC-ALADMM算法比现有异步ADMM算法快。与现有的稀疏重新验证算法相比,本文提出的分层稀疏已解施算法使得更好地利用稀疏数据的特性来减少多核群集中的系统时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号