首页> 外文会议>2018 IEEE Conference on Multimedia Information Processing and Retrieval >Beyond Big Data of Human Behaviors: Modeling Human Behaviors and Deep Emotions
【24h】

Beyond Big Data of Human Behaviors: Modeling Human Behaviors and Deep Emotions

机译:超越人类行为的大数据:模拟人类行为和深层情感

获取原文
获取原文并翻译 | 示例

摘要

Humans possess a variety of long term or short term behaviors such as gesture, posture, and movement and so on. These readable behaviors usually convey significant emotional information, which can facilitate human-machine interactions in intelligent cognitive systems. However, there is a lack of studies on modeling such complex relationship between human behavior and emotion in a time series context. This paper attempts to pioneer such an exploration. First, huge amounts of human behaviors are suggested to be captured by various sensors. Then behaviors and emotions are modeled by deep structure of bidirectional LSTM, which can represent interactions and correlations. To avoid training difficulties, bidirectional LSTM are only located in the bottom layer, and the other layers are uni-bidirectional, while the adjacent layers use residual connections. This deep bidirectional LSTM has the advantage that it can be scaled up to larger varieties of human behaviors captured by multiple sensors. The experimental results show that our proposed deep structure for modeling human behaviors and emotions is able to achieve a high degree of accuracy than shallow representation or models.
机译:人类具有各种长期或短期行为,例如手势,姿势和运动等。这些可读行为通常传达重要的情感信息,可以促进智能认知系统中的人机交互。然而,缺乏在时间序列背景下对人类行为与情感之间这种复杂关系进行建模的研究。本文试图开拓这种探索。首先,建议通过各种传感器捕获大量的人类行为。然后通过双向LSTM的深层结构对行为和情感进行建模,该结构可以表示相互作用和相关性。为避免训练困难,双向LSTM仅位于底层,其他层为单向,而相邻层使用剩余连接。这种深层的双向LSTM的优势在于,它可以扩展到由多个传感器捕获的更大范围的人类行为。实验结果表明,我们提出的用于模拟人类行为和情感的深度结构比浅层表示或模型能够实现较高的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号