首页> 外文会议>2018 EMNLP workshop SCAI: 2nd international workshop on search-oriented conversational AI >Curriculum Learning Based on Reward Sparseness for Deep Reinforcement Learning of Task Completion Dialogue Management
【24h】

Curriculum Learning Based on Reward Sparseness for Deep Reinforcement Learning of Task Completion Dialogue Management

机译:基于奖励稀疏性的课程学习,用于任务完成对话管理的深度强化学习

获取原文
获取原文并翻译 | 示例

摘要

Learning from sparse and delayed reward is a central issue in reinforcement learning. In this paper, to tackle reward sparseness problem of task oriented dialogue management, we propose a curriculum based approach on the number of slots of user goals. This curriculum makes it possible to learn dialogue management for sets of user goals with large number of slots. We also propose a dialogue policy based on progressive neural networks whose modules with parameters are appended with previous parameters fixed as the curriculum proceeds, and this policy improves performances over the one with single set of parameters.
机译:从稀疏和延迟的奖励中学习是强化学习的中心问题。在本文中,为了解决面向任务的对话管理的奖励稀疏问题,我们提出了一种基于课程的用户目标时段数量方法。该课程使学习带有大量广告位的用户目标集的对话管理成为可能。我们还提出了一种基于递进神经网络的对话策略,该对话策略的参数模块随课程进行而固定,之前的参数固定不变,并且该策略比单组参数的性能有所提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号