$beta-mathrm{Ga}_{2}mathrm{O}_{3}$nelectronic devices for high power applications have seen rapid '/> 1.5 kV Vertical Ga<inf>2</inf>O<inf>3</inf>Trench-MIS Schottky Barrier Diodes
首页> 外文会议>2018 76th Device Research Conference >1.5 kV Vertical Ga2O3Trench-MIS Schottky Barrier Diodes
【24h】

1.5 kV Vertical Ga2O3Trench-MIS Schottky Barrier Diodes

机译:1.5 kV垂直Ga 2 O 3 Trench-MIS肖特基势垒二极管

获取原文
获取原文并翻译 | 示例

摘要

$beta-mathrm{Ga}_{2}mathrm{O}_{3}$nelectronic devices for high power applications have seen rapid development over the recent years, due to the excellent material properties including an extremely large band-gap, high critical electric field, decent electron mobility and the availability of low-cost bulk substrates. As unipolar devices, Gan2nOn3nvertical Schottky barrier diodes (SBDs) have fast switching capability, while enjoying all the superior properties of Gan2nOn3n. With the development of halide vapor phase epitaxy (HVPE) capable of delivering high quality thick nnnepitaxial layers [1],n$mathrm{Ga}_{2}mathrm{O}_{3}$nvertical SBDs have shown promising results with up to 1 kV breakdown voltage (BV) together with decent on-resistancen$(mathrm{R}_{mathrm{on}})$nofn$2-6 mathrm{m}Omegacdot mathrm{cm}^{2} [1-3]$n. However, the results are still far from the projected performance which surpasses GaN and SiC [4]. One important reason is the high reverse leakage current due to the high surface electric field, which causes thermionic-field emission and barrier height lowering, especially at the device edge where field crowding occurs. The leakage current can be much reduced by edge termination techniques such as field-plating [3]. More effectively, a trench-metal-insulator-semiconductor (MIS) structure can be utilized to reduce the leakage current [5], taking advantage of the reduced surface field (RESURF) effect [6]. In this work, we demonstrate Gan2nOn3ntrench-MIS SBDs with a record-high 1.5 kV breakdown voltage without edge termination, together with a ~10n4ntimes reduction in reverse leakage current compared with regular SBDs.
机译: $ beta-mathrm {Ga} _ {2} mathrm {O} _ {3} $ 用于高功率应用的电子设备近年来发展迅速,这是由于其优异的材料性能,包括极大的带隙,高临界电场,体面的电子迁移率和低成本块状衬底的可用性。作为单极设备,Gan 2 < / inf> nOn 3 2nOn 3 n。随着卤化物气相外延(HVPE)技术的发展,该技术能够提供高质量的厚nn -外延层[1],n $ mathrm {Ga} _ {2} mathrm {O} _ {3} $ 垂直SBD已显示出令人鼓舞的结果,最高击穿电压为1 kV电压(BV)和适当的导通电阻n $(mathrm {R} _ {mathrm {on}})$ nofn $2-6 mathrm {m} Omegacdot mathrm {cm} ^ {2} [1-3] $ n。但是,结果仍远没有达到GaN和SiC的预期性能[4]。一个重要的原因是由于高表面电场引起的高反向泄漏电流,这导致热电子场发射和势垒高度降低,尤其是在发生电场拥挤的器件边缘。漏电流可以通过边缘终止技术(例如现场电镀)来大大降低[3]。更有效的是,可利用沟槽金属绝缘体半导体(MIS)结构来减少泄漏电流[5],同时利用减小的表面场(RESURF)效应[6]。在这项工作中,我们演示了Gan 2 nOn 3 具有创纪录的1.5 kV击穿电压且无边缘终止的ntrench-MIS SBD,以及〜10n 4 n较常规SBD减少了反向泄漏电流。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号