首页> 外文会议>2018 55th ACM/ESDA/IEEE Design Automation Conference >S2FA: An Accelerator Automation Framework for Heterogeneous Computing in Datacenters
【24h】

S2FA: An Accelerator Automation Framework for Heterogeneous Computing in Datacenters

机译:S2FA:数据中心中异构计算的加速器自动化框架

获取原文
获取原文并翻译 | 示例

摘要

Big data analytics using the JVM-based MapReduce framework has become a popular approach to address the explosive growth of data sizes. Adopting FPGAs in datacenters as accelerators to improve performance and energy efficiency also attracts increasing attention. However, the integration of FPGAs into such JVM-based frameworks raises the challenge of poor programmability. Programmers must not only rewrite Java/Scala programs to C/C++ or OpenCL, but, to achieve high performance, they must also take into consideration the intricacies of FPGAs. To address this challenge, we present S2FA (Spark-to-FPGA-Accelerator), an automation framework that generates FPGA accelerator designs from Apache Spark programs written in Scala. S2FA bridges the semantic gap between object-oriented languages and HLS C while achieving high performance using learning-based design space exploration. Evaluation results show that our generated FPGA designs achieve up to 49.9× performance improvement for several machine learning applications compared to their corresponding implementations on the JVM.
机译:使用基于JVM的MapReduce框架进行大数据分析已成为解决数据量爆炸式增长的流行方法。在数据中心采用FPGA作为加速器以提高性能和能效也引起了越来越多的关注。但是,将FPGA集成到此类基于JVM的框架中带来了可编程性较差的挑战。程序员不仅必须将Java / Scala程序重写为C / C ++或OpenCL,而且要实现高性能,还必须考虑FPGA的复杂性。为了应对这一挑战,我们提出了S2FA(Spark-to-FPGA-Accelerator),这是一种自动化框架,可以从用Scala编写的Apache Spark程序生成FPGA加速器设计。 S2FA弥补了面向对象语言和HLS C之间的语义鸿沟,同时使用基于学习的设计空间探索来实现高性能。评估结果表明,与在JVM上的相应实现相比,我们生成的FPGA设计在几种机器学习应用中的性能提高了49.9倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号