首页> 外文会议>2018 55th ACM/ESDA/IEEE Design Automation Conference >IAFinder: Identifying Potential Implicit Assumptions to Facilitate Validation in Medical Cyber-Physical System
【24h】

IAFinder: Identifying Potential Implicit Assumptions to Facilitate Validation in Medical Cyber-Physical System

机译:IAFinder:识别潜在的隐式假设以促进医疗网络物理系统中的验证

获取原文
获取原文并翻译 | 示例

摘要

According to the U.S. Food and Drug Administration (FDA) medical device recall database, medical device recalls are at an all-time high. One of the major causes of the recalls is due to implicit assumptions of which either the medical device operating environment does not match, or the device operators are not aware of. In this paper, we present IAFinder (Implicit Assumption Finder), a tool that uses data mining techniques to automatically extract invariants from design models implemented with statecharts. By identifying invariants that are not explicitly specified in the design models, we are able to find implicit assumptions and better facilitate domain experts to validate them and make the validated implicit assumptions explicit. We use a cardiac arrest statechart model as a case study to illustrate the usage of IAFinder in identifying implicit assumptions.
机译:根据美国食品药品监督管理局(FDA)的医疗设备召回数据库,医疗设备召回历史最高。召回的主要原因之一是由于医疗设备操作环境不匹配或设备操作员不知道的隐式假设。在本文中,我们介绍了IAFinder(隐式假设查找器),该工具使用数据挖掘技术从状态图实现的设计模型中自动提取不变式。通过识别设计模型中未明确指定的不变量,我们能够找到隐式假设,并更好地帮助领域专家对其进行验证,并使已验证的隐式假设明确。我们使用心脏骤停状态图模型作为案例研究,以说明IAFinder在识别隐含假设中的用法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号