首页> 外文会议>2018 2nd International Conference on Natural Language and Speech Processing >Stock market random forest-text mining system mining critical indicators of stock market movements
【24h】

Stock market random forest-text mining system mining critical indicators of stock market movements

机译:股票市场随机森林文本挖掘系统挖掘股票市场走势的关键指标

获取原文
获取原文并翻译 | 示例

摘要

Stock Market (SM) is believed to be a significant sector of a free market economy as it plays a crucial role in the growth of commerce and industry of a country. The increasing importance of SMs and their direct influence on economy were the main reasons for analysing SM movements. The need to determine early warning indicators for SM crisis has been the focus of study by many economists and politicians. Whilst most research into the identification of these critical indicators applied data mining to uncover hidden knowledge, very few attempted to adopt a text mining approach. This paper demonstrates how text mining combined with Random Forest algorithm can offer a novel approach to the extraction of critical indicators, and classification of related news articles. The findings of this study extend the current classification of critical indicators from three to eight classes; it also show that Random Forest can outperform other classifiers and produce high accuracy.
机译:人们认为股票市场(SM)是自由市场经济的重要部门,因为它在一个国家的工商业发展中起着至关重要的作用。小型企业的重要性日益增加及其对经济的直接影响是分析小型企业运动的主要原因。确定SM危机的预警指标的需要一直是许多经济学家和政治家研究的重点。尽管大多数有关识别这些关键指标的研究都是通过数据挖掘来发现隐藏的知识,但很少有人尝试采用文本挖掘方法。本文演示了结合随机森林算法的文本挖掘如何为关键指标的提取和相关新闻文章的分类提供一种新颖的方法。这项研究的结果将关键指标的当前分类从三类扩展到了八类。这也表明随机森林可以胜过其他分类器并产生较高的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号