【24h】

Deep generative image model using a hybrid system of generative adversarial nets (GANs)

机译:使用生成对抗网络(GAN)的混合系统的深度生成图像模型

获取原文
获取原文并翻译 | 示例

摘要

Synthesizing realistic images has been a challenge in machine learning, due to images being complex and high dimensional, thus making them hard to model well. Building on the recent progress made in both, generative multi adversarial nets (GMAN) and conditional generative adversarial nets (CGAN), this research aims at introducing a new method to improve image synthesis in generative adversarial networks (GAN). The research benefits from combining the best of both techniques to build a model (Hybrid-GAN) that produces higher images quality, which is hardly distinguished from real images. Furthermore, this model significantly enhances log-likelihood of test data under the conditional distributions. To validate the results, we have conducted a detailed comparison between images generated by our new model, Hybrid-GAN and those images produced by standard GANs. We execute the new model using MNIST dataset and demonstrated the results obtained from the generating task.
机译:由于图像复杂且维数高,因此合成逼真的图像在机器学习中一直是一个挑战,因此很难对其进行良好建模。基于生成多对抗网络(GMAN)和条件生成对抗网络(CGAN)的最新进展,本研究旨在引入一种新方法来改进生成对抗网络(GAN)中的图像合成。这项研究得益于将两种技术的优点相结合,以构建可产生更高图像质量的模型(Hybrid-GAN),该模型很难与真实图像区分开。此外,该模型显着增强了条件分布下测试数据的对数似然性。为了验证结果,我们对新模型Hybrid-GAN生成的图像与标准GAN生成的图像进行了详细的比较。我们使用MNIST数据集执行新模型,并演示了从生成任务中获得的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号