首页> 外文会议>2017 International Conference on Inventive Computing and Informatics >Recognition of facial expressions using Gaussian based edge direction and texture descriptor
【24h】

Recognition of facial expressions using Gaussian based edge direction and texture descriptor

机译:使用基于高斯的边缘方向和纹理描述符识别面部表情

获取原文
获取原文并翻译 | 示例

摘要

The aim of Facial Expression Recognition (FER) is, based on facial information to observe and realize human emotions. It is an exciting and exigent problem to distinguish the human facial expression and emotion. This paper suggests a Gaussian based Edge Detection and Texture Descriptor (GEDTD) for FER. Regarding 8 Gaussian edge descriptors GEDTD is formed. The proposed GEDTD extract both image texture feature and edge direction. Using Local XOR Coding (LXC) scheme the interior and locality pixels of edge response directions are encoded for extraction. Ultimately these features are combined and it forms the feature vector. The expressions of different poses likely disgust, sad, smile and surprise are trained by using Convolution Neural Network (CNN), which differentiates the facial expressions into disgust, sad, smile and surprise. The suggested process increases the recognition accuracy at an important level. The under taken method is an appropriate one for any recognition requirements.
机译:面部表情识别(FER)的目的是基于面部信息来观察和实现人类情感。区分人的面部表情和情感是一个激动而紧迫的问题。本文提出了一种基于高斯的FER边缘检测和纹理描述符(GEDTD)。关于8个高斯边缘描述符,形成了GEDTD。提出的GEDTD提取图像纹理特征和边缘方向。使用局部XOR编码(LXC)方案,对边缘响应方向的内部和局部像素进行编码以进行提取。最终,这些特征被组合起来并形成特征向量。使用卷积神经网络(CNN)可以训练出可能令人厌恶,悲伤,微笑和惊喜的不同姿势的表情,该算法可以将面部表情分为厌恶,悲伤,微笑和惊喜的表情。建议的过程在一个重要的水平上提高了识别精度。对于任何识别要求,采用的方法都是合适的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号