首页> 外文期刊>Multimedia Tools and Applications >Emotion recognition using facial expression by fusing key points descriptor and texture features
【24h】

Emotion recognition using facial expression by fusing key points descriptor and texture features

机译:通过熔断关键点描述符和纹理特征,使用面部表情的情感识别

获取原文
获取原文并翻译 | 示例

摘要

Emotions have a great significance in human-to-human and in human-to-computer communication and interaction. In this paper, an effective and novel approach to recognize the emotions using facial expressions by the fusion of duplex features is proposed. The proposed approach broadly have three phases, phase-I: ROIs extraction, phase-2:Fusion of duplex features and phase-III: Classification. The proposed approach also gives a novel eye center detection algorithm to detect centres of the eyes. The outcome of the algorithm is further contribute to locate and partition the facial components. The hybrid combination of duplex features also gives the importance of fusion of features over individual features. The proposed approach classify the 5 basic emotions i.e. angry, happy, sad, disgust, surprise. The proposed method also raise the issue of high misclassification rate of emotions in higher age groups (40) and successfully overcomes it. The proposed approach and its outcome evaluation is validated by using four datasets: the dataset created by us including 2500 images of 5 basic emotions (angry, happy, sad, disgust, surprise) having 500 images per emotions, CK+ dataset, MMI dataset and JAFEE dataset. Experimental results shows that the proposed work significantly improves the recognition rate (approx. 97%, 88%, 86%, 93%) and reduces the misclassification rate (approx.1.4%, 7.6%, 6.6%, 2.7%) even for the subjects of higher age group.
机译:情绪在人对人类和人对计算机通信和互动方面具有重要意义。在本文中,提出了一种通过双工特征融合来识别使用面部表情的有效和新的方法。所提出的方法广泛有三个阶段,I期:ROI提取,阶段-2:双工特征融合和阶段 - III:分类。该方法还提供了一种新型眼中心检测算法来检测眼睛的中心。算法的结果进一步有助于定位和分区面部组件。双工特征的混合组合还给出了具有个别特征的功能融合的重要性。拟议的方法分类了5个基本情绪,即愤怒,快乐,悲伤,厌恶,惊喜。该方法还提出了在高龄群体(> 40)中提出了高分错误的情绪率的问题,并成功克服了它。通过使用四个数据集验证了所提出的方法及其结果评估:由我们创建的数据集包括2500个基本情绪的图像(愤怒,快乐,悲伤,厌恶,惊喜),每个情绪,CK + DataSet,MMI DataSet和Jafee数据集。实验结果表明,拟议的工作显着提高了识别率(约97%,88%,86%,93%)并降低了分类率(约1.4%,7.6%,6.6%,2.7%)即使是为了高龄组的主题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号