首页> 外文会议>2017 IEEE Workshop on Data Systems for Interactive Analysis >Coupling visualization, simulation, and deep learning for ensemble steering of complex energy models
【24h】

Coupling visualization, simulation, and deep learning for ensemble steering of complex energy models

机译:可视化,仿真和深度学习的耦合,用于复杂能量模型的整体控制

获取原文
获取原文并翻译 | 示例

摘要

We describe a new framework that allows users to explore and steer ensembles of energy systems simulations by coupling multiple energy models and interactive visualization through a dataflow API. Through the visual interface, users can interactively explore complex parameter spaces populated by hundreds, or thousands, of simulation runs and interactively spawn new simulations to “fill in” regions of interest in the parameter space. The computational and visualization capabilities reside within a general-purpose dataflow architecture for connecting producers of multidimensional timeseries data, such as energy simulations, with consumers of that data, whether they be visualizations, statistical analyses, or datastores. Fast computation and agile dataflow can enhance the engagement with energy simulations, allowing users to populate the parameter space in real time. However, many energy simulations are far too slow to provide an interactive response. To support interactive feedback, we are creating reduced-form simulations developed through machine learning techniques, which provide statistically sound estimates of the results of the full simulations at a fraction of the computational cost. These reduced-form simulations have response times on the order of seconds, suitable for real-time human-in-the-loop design and analysis. The approximation methods apply to a wide range of computational models, including supply-chain models, electric power grid simulations, and building models. Such reduced-form representations do not replace or re-implement existing simulations, but instead supplement them by enabling rapid scenario design and exploration for large ensembles of simulations. The improved understanding, facilitated by the reduced-form models, dataflow API, and visualization tools, allows researchers to better allocate computational resources to capture informative relationships within the system as well as provide a low-cost method for validating and quality-checking large-scale modeling efforts.
机译:我们描述了一个新的框架,该框架允许用户通过数据流API耦合多个能源模型和交互式可视化来探索和指导能源系统模拟的集合。通过可视界面,用户可以交互地浏览由数百或数千个模拟运行组成的复杂参数空间,并以交互方式生成新的模拟以“填充”参数空间中的关注区域。计算和可视化功能驻留在通用数据流体系结构中,用于将多维时间序列数据(例如能源模拟)的生成器与该数据的使用者(无论是可视化,统计分析还是数据存储)进行连接。快速的计算和敏捷的数据流可以增强与能源模拟的互动,使用户可以实时填充参数空间。但是,许多能量模拟太慢而无法提供交互式响应。为了支持交互式反馈,我们正在创建通过机器学习技术开发的简化形式的仿真,该仿真以较少的计算成本提供了完整仿真结果的统计合理估计。这些简化形式的仿真具有几秒钟的响应时间,适合实时在环设计和分析。近似方法适用于各种计算模型,包括供应链模型,电网仿真和建筑模型。这种简化形式的表示并不能替代或重新实现现有的模拟,而是通过对大型模拟进行快速场景设计和探索来补充它们。简化形式的模型,数据流API和可视化工具促进了对知识的改进,从而使研究人员可以更好地分配计算资源来捕获系统内的信息关系,并提供一种低成本的方法来验证和检查大型的规模建模工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号