【24h】

Consensus-based anomaly detection for efficient heating management

机译:基于共识的异常检测可实现高效的加热管理

获取原文
获取原文并翻译 | 示例

摘要

The analysis of data to monitor human-related activities plays a crucial role in the development of smart policies to improve well being and sustainability of our cities. For several applications in this context anomalies in time series can be associated to smaller timeframes such as days or weeks. In this work we propose a consensus-based anomaly detection approach that exploits the power of the Symbolic Aggregate approXimation (SAX) and the specificity of such time series. In our approach, the normalization of the signal becomes a proper element of the modeling. In fact, we conjecture that different normalization horizons allow to include in the shape of the timeseries patterns an additional, variable, component from a longer period trend. To support the analysis phase, a calendar can be used as an additional source of information to discriminate between really unwanted anomalies and expected anomalies (e.g. weekends), or even to signal a possible anomaly whenever a “normal” behavior is not expected. Preliminary experiments on temperature analysis in an indoor environment, with the scope of thermal energy saving, showed that our approch effectively identifies all known anomalies, and also pointed out some unexpected, but clear, anomalies.
机译:数据分析以监视与人类有关的活动在制定明智的政策以改善我们城市的福祉和可持续性方面起着至关重要的作用。对于这种情况下的几种应用,时间序列中的异常可能与较小的时间范围(例如几天或几周)相关联。在这项工作中,我们提出了一种基于共识的异常检测方法,该方法利用了符号聚合近似(SAX)的功能以及此类时间序列的特异性。在我们的方法中,信号的归一化成为建模的适当元素。实际上,我们推测,不同的标准化范围允许在时间序列模式的形状中包括来自较长时期趋势的其他可变要素。为了支持分析阶段,可以将日历用作附加信息源,以区分真正不需要的异常和预期的异常(例如,周末),或者甚至在不需要“正常”行为的情况下发出可能的异常信号。在室内环境中进行温度分析的初步实验(具有节省热能的作用)表明,我们的方法可以有效地识别所有已知异常,并指出一些意外但清晰的异常。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号