首页> 外文会议>2017 IEEE Conference on Network Function Virtualization and Software Defined Networks >Genetic algorithms with particle swarm optimization based mutation for distributed controller placement in SDNs
【24h】

Genetic algorithms with particle swarm optimization based mutation for distributed controller placement in SDNs

机译:基于粒子群优化的变异遗传算法用于SDN分布式控制器布局

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a distributed controller placement problem that finds out the pareto optimal solutions minimizing the switch-to-controller delay, controller-to-controller delay, and controller load imbalance for wide area software defined networks. We introduce a general model that not only considers the controller placements but also the switch assignments, so that this model can further be used to develop many other multi-objective optimization problems such as energy saving, controller migration, or NFV allocation. To solve this problem with huge search space without losing generality, we introduce a Multi-Objective Genetic Algorithm (MOGA) with a particle swarm optimization based mutation function. It maintains a pre-calculated global best position for each single objective, and choose the global best position of an objective that has the best accordance to a parent to guide the mutation of the parent. Evaluations show that our MOGA can generate a pareto frontier with a larger diversity toward the given global best positions in much shorter convergence time than a general MOGA.
机译:本文提出了一个分布式控制器放置问题,该问题找出了最佳解决方案,从而将广域软件定义网络的切换到控制器延迟,控制器到控制器延迟和控制器负载不平衡最小化。我们引入了一个通用模型,该模型不仅考虑了控制器的位置,而且还考虑了开关的分配,因此该模型可以进一步用于开发许多其他多目标优化问题,例如节能,控制器迁移或NFV分配。为了在不失去通用性的情况下以巨大的搜索空间解决此问题,我们引入了一种基于粒子群优化的变异函数的多目标遗传算法(MOGA)。它为每个单个目标维护一个预先计算的全局最佳位置,并选择一个与父对象具有最佳一致性的目标的全局最佳位置,以指导父对象的突变。评估表明,与一般的MOGA相比,我们的MOGA可以在更短的收敛时间内生成朝向给定的全球最佳位置的,具有较大多样性的pareto边界。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号