首页> 外文会议>2017 IEEE 23rd Symposium on High Performance Computer Architecture >FlexFlow: A Flexible Dataflow Accelerator Architecture for Convolutional Neural Networks
【24h】

FlexFlow: A Flexible Dataflow Accelerator Architecture for Convolutional Neural Networks

机译:FlexFlow:用于卷积神经网络的灵活数据流加速器体系结构

获取原文
获取原文并翻译 | 示例

摘要

Convolutional Neural Networks (CNN) are verycomputation-intensive. Recently, a lot of CNN accelerators based on the CNN intrinsic parallelism are proposed. However, we observed that there is a big mismatch between the parallel types supported by computing engine and the dominant parallel types of CNN workloads. This mismatch seriously degrades resource utilization of existing accelerators. In this paper, we propose aflexible dataflow architecture (FlexFlow) that can leverage the complementary effects among feature map, neuron, and synapse parallelism to mitigate the mismatch. We evaluated our design with six typical practical workloads, it acquires 2-10x performance speedup and 2.5-10x power efficiency improvement compared with three state-of-the-art accelerator architectures. Meanwhile, FlexFlow is highly scalable with growing computing engine scale.
机译:卷积神经网络(CNN)的计算量很大。最近,提出了许多基于CNN固有并行性的CNN加速器。但是,我们发现计算引擎支持的并行类型与主要的CNN工作负载并行类型之间存在很大的不匹配。这种不匹配会严重降低现有加速器的资源利用率。在本文中,我们提出了一种灵活的数据流架构(FlexFlow),该架构可以利用特征图,神经元和突触并行性之间的互补效应来减轻不匹配。我们用六种典型的实际工作负载评估了我们的设计,与三种最新的加速器体系结构相比,它可将性能提高2-10倍,并将电源效率提高2.5-10倍。同时,随着计算引擎规模的不断扩大,FlexFlow具有高度可扩展性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号