首页> 外文会议>2016 IEEE/WIC/ACM International Conference on Web Intelligence Workshops >A Decomposition-Based Constraint-Handling Technique for Constrained Multi-objective Optimization
【24h】

A Decomposition-Based Constraint-Handling Technique for Constrained Multi-objective Optimization

机译:约束多目标优化的基于分解的约束处理技术

获取原文
获取原文并翻译 | 示例

摘要

In recent years, many constraint-handling techniques maintaining infeasible individuals in the population have demonstrated their effectiveness for solving constrained optimization problems. Generally, the effective utilization of the potential of the infeasible individuals will improve the performance of the algorithms. This paper proposes an approach based on decomposition for constrained multi-objective optimization problems. By transforming the degree of constraint violation into one objective, a constraint-handling technique is introduced to exploit useful infeasible individuals during the evolution process. Besides, along with the evolution, it puts more emphasis on infeasible individuals with better objective values and smaller constraint violations, since they can provide more importance information for improving the convergence and diversity of the population. The performance of the proposed algorithm is evaluated by using 8 well-known test instances, i.e. CTP-series test instances. And the experimental results indicate that our algorithm is superior to the compared algorithm.
机译:近年来,许多维护人口中不可行个体的约束处理技术已经证明了其解决约束优化问题的有效性。通常,有效利用不可行个体的潜能将改善算法的性能。本文提出了一种基于分解的约束多目标优化问题的方法。通过将约束违反的程度转换为一个目标,引入了一种约束处理技术来在进化过程中利用有用的不可行个体。此外,随着进化,它更加重视具有更好的客观价值和较小的违反约束条件的不可行个体,因为他们可以提供更多重要信息来改善人口的融合和多样性。通过使用8个众所周知的测试实例(即CTP系列测试实例)来评估所提出算法的性能。实验结果表明,该算法优于同类算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号