首页> 外文会议>2015 IEEE 29th International Parallel and Distributed Processing Symposium Workshops >On the Performance, Energy, and Power of Data-Access Methods in Heterogeneous Computing Systems
【24h】

On the Performance, Energy, and Power of Data-Access Methods in Heterogeneous Computing Systems

机译:异构计算系统中数据访问方法的性能,能量和功率

获取原文
获取原文并翻译 | 示例

摘要

Graphics processing units (GPUs) have delivered promising speedups in data-parallel applications. A discrete GPU resides on the PCIe interface and has traditionally required data to be moved from the host memory to the GPU memory via PCIe. In certain applications, the overhead of these data transfers between memory spaces can nullify any performance gains achieved from faster computation on the GPU. Recent advances allow GPUs to directly access data from the host memory across the PCIe bus, thereby alleviating the data-transfer bottlenecks. Another class of accelerators called accelerated processing units (APUs) mitigate data-transfer overhead by placing CPU and GPU cores on the same physical die. However, APUs in the current form provide several different data paths between the CPU and GPU, all of which can differently affect application performance. In this paper, we explore the effects of different available data paths on both GPUs and APUs in the context of a broader set of computation and communication patterns commonly referred to as dwarfs.
机译:图形处理单元(GPU)在数据并行应用中提供了令人鼓舞的加速。离散GPU驻留在PCIe接口上,并且传统上具有通过PCIe从主机存储器移至GPU存储器的所需数据。在某些应用中,内存空间之间这些数据传输的开销可能会使GPU上更快的计算所获得的任何性能提升无效。最新的进展允许GPU通过PCIe总线直接从主机内存访问数据,从而减轻了数据传输的瓶颈。另一类称为加速处理单元(APU)的加速器通过将CPU和GPU内核置于同一物理芯片上来减轻数据传输开销。但是,当前形式的APU在CPU和GPU之间提供了几种不同的数据路径,所有这些路径都可以不同地影响应用程序性能。在本文中,我们将在广泛称为“矮人”的更广泛的计算和通信模式的背景下,探索不同可用数据路径对GPU和APU的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号