【24h】

A Novel Graph-Based Method to Study Community Evolutions in Social Interactions

机译:基于图的新型方法研究社会互动中的社区演化

获取原文
获取原文并翻译 | 示例

摘要

Understanding community evolutions in social interactions is meaningful to study user behavior in social networks. In fact, social interactions have highly dynamic characteristics, and the time when the interactions have occurred is necessary for studying evolutions of communities. However, the temporal information is ignored in existing studies. Therefore, a graph-based method incorporating a decay function is proposed to model social interactions in this paper. Furthermore, the CPMw (Clique Percolation Method with Weights) method is applied to the graph to detect communities in each time slice. In this way, the evolutions of communities could be well investigated. Finally, the Digg dataset is used to evaluate the proposed method. The experimental results demonstrate that the temporal information is useful to study the community evolutions in social interactions.
机译:了解社交互动中的社区演变对于研究社交网络中的用户行为具有重要意义。实际上,社会互动具有高度动态的特征,而互动发生的时间对于研究社区的演变是必要的。但是,现有研究中忽略了时间信息。因此,本文提出了一种基于图的方法,该方法结合了衰减函数来对社交互动进行建模。此外,将CPMw(带权重的渗滤方法)方法应用于图形以检测每个时间片中的社区。这样,可以很好地研究社区的演变。最后,将Digg数据集用于评估所提出的方法。实验结果表明,时间信息对于研究社会互动中的社区演化是有用的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号