【24h】

A Hybrid Vertex Outlier Detection Method Based on Distributed Representation and Local Outlier Factor

机译:基于分布式表示和局部离群值因子的混合顶点离群值检测方法

获取原文
获取原文并翻译 | 示例

摘要

Outlier detection is a basic task in network analysis, which is useful in many applications such as intrusion detection, criminal investigation, and information filtering. In this paper we proposed a hybrid outlier detection methods in complex networks based on Vertex Distributed Representation and Local Outlier Factor, with the aim to find abnormal vertexes that are apart from the group or community in complex networks. The proposed outlier detection method based on Vertex Distributed Representation (VDR) and Local Outlier Factor (LOF) is named as VDR-LOF. VDR-LOF maps vertexes or edges into a density continuous real-valued space, and then uses LOF algorithm to detection the outliers. We conducted experiments on American College Football Network and Enron Email Network, visualized the original networks and its corresponding feature map in 2D space, then we found the vertex outliers in the network.
机译:离群检测是网络分析中的一项基本任务,在入侵检测,犯罪侦查和信息过滤等许多应用中很有用。本文提出了一种基于顶点分布表示和局部离群值因子的复杂网络混合离群值检测方法,旨在发现复杂网络中与群或社区不同的异常顶点。提出的基于顶点分布表示(VDR)和局部离群值因子(LOF)的离群值检测方法被称为VDR-LOF。 VDR-LOF将顶点或边映射到密度连续的实值空间中,然后使用LOF算法检测离群值。我们在美国大学橄榄球网络和安然电子邮件网络上进行了实验,在2D空间中可视化了原始网络及其对应的特征图,然后在网络中找到了顶点离群值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号