首页> 外文会议>2014 National Conference on Communication, Signal Processing and Networking >Comparison of conventional methods and deep belief networks for isolated word recognition
【24h】

Comparison of conventional methods and deep belief networks for isolated word recognition

机译:传统方法与深度信念网络用于孤立词识别的比较

获取原文
获取原文并翻译 | 示例

摘要

A comparative analysis of the use of conventional methods and Deep Belief Networks (DBN) for speaker independent Isolated Word Recognition on small vocabulary is discussed in this paper. The conventional methods of speech recognition include HMM/GMM framework and Multilayer Perceptrons (MLPs). Features from the speech frames are used to train MLPs using back-propagation. The features that are extracted are 12 order LPCs and 39 dimensional MFCCs for each frame. The stacked Restricted Boltzmann Machines (RBM) constitute a Deep Belief Networks (DBNs). The DBN learning procedure undergoes a pre-training stage and a fine-tuning stage. DBNs gave a higher performance as compared with the conventional methods with an accuracy of approximately 93% for Isolated Word Recognition using MFCC features.
机译:本文讨论了使用常规方法和深度信念网络(DBN)进行小词汇量独立于说话人的孤立单词识别的比较分析。语音识别的常规方法包括HMM / GMM框架和多层感知器(MLP)。语音帧中的特征用于使用反向传播来训练MLP。每帧提取的特征是12阶LPC和39维MFCC。堆叠的受限玻尔兹曼机器(RBM)构成了深度信仰网络(DBN)。 DBN学习过程经历了预训练阶段和微调阶段。与传统方法相比,DBN具有更高的性能,使用MFCC功能的隔离单词识别的准确率约为93%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号