首页> 外文会议>2014 IEEE Workshop on Statistical Signal Processing >Maximum marginal likelihood estimation of the granularity coefficient of a Potts-Markov random field within an MCMC algorithm
【24h】

Maximum marginal likelihood estimation of the granularity coefficient of a Potts-Markov random field within an MCMC algorithm

机译:MCMC算法中Potts-Markov随机字段的粒度系数的最大边际似然估计

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses the problem of estimating the Potts-Markov random field parameter β; jointly with the unknown parameters of a Bayesian image segmentation model. We propose a new adaptive Markov chain Monte Carlo (MCMC) algorithm for performing joint maximum marginal likelihood estimation of β; and maximum-a-posteriori unsupervised image segmentation. The method is based on a stochastic gradient adaptation technique whose computational complexity is significantly lower than that of the competing MCMC approaches. This adaptation technique can be easily integrated to existing MCMC methods where β; was previously assumed to be known. Experimental results on synthetic data and on a real 3D real image show that the proposed method produces segmentation results that are as good as those obtained with state-of-the-art MCMC methods and at much lower computational cost.
机译:本文讨论了估计Potts-Markov随机场参数β的问题;结合贝叶斯图像分割模型的未知参数。我们提出了一种新的自适应马尔可夫链蒙特卡罗(MCMC)算法,用于执行β的联合最大边际似然估计。和最大后验无监督图像分割。该方法基于随机梯度自适应技术,其计算复杂度明显低于竞争性MCMC方法。这种适应技术可以轻松地集成到现有的MCMC方法中,其中β;以前被认为是已知的。在合成数据和真实3D真实图像上的实验结果表明,该方法产生的分割结果与使用最新的MCMC方法获得的分割结果一样好,并且计算成本更低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号